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TRANSIENT THERMAL BEHAVIOUR OF GROUND ELECTRODES 

PART II: CYLINDRICAL ELECTRODES 

G.  J .  B e r g , *  a n d  A . G .  H e r r o n . * *  

SUMMARY 

Transient thermal performance of a ground electrode arrangement consisting of concentric cylinders with 
axis in the earth's surface has been studied. The solutions obtained involve integrals which must be evaluated 
numerically. Some numerical results are presented, assuming typical moist soil conditions. A procedure is sug- 
gested whereby the transient thermal performance of single cylinder arrangements may be predicted. 

i. Introduction 

In Part I, spherical electrode arrangements were considered and solutions 
for the transient temperature rise following a step riw in electrode potential 
were presented. [i] While the spherical electrode is of interest for a 
number of reasons, a cylindrical configuration corresponds much more 
closely to practical electrode arrangements. 

The analysis of the transient thermal behaviour of a cylindrical electrode 
system, which is the subject of this paper, has been based on assumptions 
similar to those for the spheres. The chosen model consists of an inner 
cylinder of radius a and an outer concentric cylinder of radius b located 
with the axis in the earth's surface. Radial symmetry is assumed for both 
electric and thermal fields, implying that the cylinders are long compared 
to their radii and that end effects can be neglected. These assumptions do 
not permit increasing b without limit in order to study the single cylinder 
electrode. But an approach is suggestes by which b is related to the length 
of the electrically equivalent single cylinder. An indication of the thermal 
performance of the single cylinder arrangement is thus obtain~ d. 

Assumptions and boundary conditions are as follows: 
i. A step rise in electric potential from 0 to U 0 occurs at the inner 

cylinder at the time t = 0. 
2. The outer cylinder remains at zero potential. 
3. The inner cylinder has negligible heat capacity compared to the near 

environment, hence temperature gradient at radius a remains zero, 
4. The outer cylinder is held at constant temperature, Tam b . 
5. Initially the temperature is uniform and equal to ambient throughout 

the medium. 
6. The medium between the cylinders is homogeneous and isotropic 

with temperature-independent physical parameters. 

It will be noted that the assumption of radial symmetry excludes heat 
loss to the atmosphere. This assumption makes the boundary conditions 
for the electric and thermal fields similar so that it becomes possible to 
express final temperature rise of the electrode in terms of the electrode 
potential and physical parameters of the surrounding medium. [2]. 
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2. Analysis 

Under the conditions -assumed, temperature will be a function of radius 
and time only. Consider a unit length of the cylinder arrangement. The 
thermal field is governed by the Diffusion Equation with a heat generation 
term [3], 

1 aT 
V 2 T  + PT (E.T) = K a--t- (i) 

w h e r e  T : T ( r , t } ,  [ ~  PT : t h e r m a l  r e s i s t i v i t y ,  I r a ~  ]~ = e l e c t r i c  
f i e l d  g r a d i e n t  E V / m ] ,  i = c u r r e n t  d e n s i t y  [ A / m ] ,  and  k = t h e r m a l  d i f f u s i v i t y  
EW2/sec] 

The h e a t  g e n e r a t i o n  t e r m  m a y  now be e x p r e s s e d  as  

PT Gc 
PT E r i r : ~ ( -  g r a d  U) 2 - (2) 

r2  

w h e r e  PE = e l e c t r i c a l  r e s i s t i v i t y ,  [ f~m] ,  and  Gc is  the h e a t  g e n e r a t i o n  
c o n s t a n t .  The  p o t e n t i a l  d i s t r i b u t i o n  b e t w e e n  the c y l i n d e r s  b e c o m e s  

r 
in 

U = U ( r ) = U o  - - ,  a < r < b (3) 
a m _ 

In  ~ 

and hence the heat generation constant for the cylindrical arrangement 
is found to be 

PT Uo 2 

Gc = PE ( l n b )  2 (4) 

Combining Eqs. (4) and (2) with (i), the basic partial differential equation 
for the temperature field is obtained, 

82T  Gc i 8T +_i 0__T +__ = 
Dr 2 r Or r 2 k 8t 

(5) 

Solution may be assumed to have the form 

T ( r , t )  = R  c ( r )  S c( t )  + f c ( r )  (6) 

Since the time dependent part must vanish as t -~, fc(r) represents the 
final or steady state temperature distribution between the cylinders. 

Substituting for T in eq. (5) yields 

82Rc Sc ORc 82fc 1 0fc Gc Rc 8Sc 

S c - -  + ~ -- + ~ +-- -- + - 
8R 2 r O r  8 r  2 r 8 r  r2 k 8t 

(7) 

To satisfy the conditions of the problem, the sum of the purely radius 
dependent term in Eq. (7) must equal zero, i.e., 
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a2fc 1 arc Ge 
~+--~ +-- = 0 
8r  2 r 8r  r2 
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(8) 

E q u a t i o n  (8) thus  c o n c e r n s  the s t e a d y  s t a t e  t e m p e r a t u r e  d i s t r i b u t i o n .  The  
s o l u t i o n ,  wi th  b o u n d a r y  c o n d i t i o n s  a s  a s s u m e d ,  is  found  a s  

f c ( r )  = Tam b + if- G c n2b - l n 2 r  - 2 ( l n  a) i n  (9) 

T h e  m a x i m u m  e l e c t r o d e  t e m p e r a t u r e  r i s e  is  o b t a i n e d  f r o m  Eq .  (9) by  
t a k i n g  r = a :  

= i b 
ATmax fc (a )  - Tamb = 2 Gc ln2 E (10) 

By substituting for G c from Eq. (4), we find 

PT 
ATmax = �89 G U~ 

which is identical to the result for the spheres. 
The remaining part of Eq. (7) is as follows 

(li) 

O2R c S c aR  c R c aS c 
S c - -  + - (12) 

3 r  2 r 8 r  k 8t  

Following the Separation of Variables technique, let 

hence 

i 8Sc 
= _ k 2 ' 

k S  c a t  

S c = S c( t )  = C1 e-X2kt (13) 

The  r a d i u s  d e p e n d e n t  f u n c t i o n ,  Re, i s  g o v e r n e d  by 

a 2 R c OR c 
r 2 -  + + ( rk )  2 R = 0 (14) 

a r  2 a r c 

wh ich  c o r r e s p o n d s  to B e s s e l ' s  e q u a t i o n  of o r d e r  z e r o  wi th  ( l r ) a s  i n -  
d e p e n d e n t  v a r i a b l e .  The  s o l u t i o n  to Eq .  (14) is  t h e r e f o r e  

R e ( r )  = C2 Jo(kr )  + C3 u  (15) 

Now,  c o m b i n i n g  E q s .  (9), (13) and  (15) and  t a k i n g  the s u m  of a l l  p o s -  
s i b l e  s o l u t i o n ,  the t e m p e r a t u r e  f u n c t i o n  c a n  be e x p r e s s e d  a s  

T ( r ' t )  = ~n=O e-knkt (AnJ~ +BnY~ +fc(r) (16) 

Zero temperature gradient at r = a requires that 

e -xnkt 3 .n fAnJo ' (3 .n r  ) + B n u  t = 0 
n=O rma 

(17) 
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An J~  + Bn Y~ = 0 (17) 

At the o u t e r  b o u n d a r y ,  the t e m p e r a t u r e  r e m a i n s  c o n s t a n t ,  equa l  to 
a m b i e n t .  Th i s  cond i t i on  wil l  be s a t i s f i e d  by Eq.  (16) by r e q u i r i n g  

AnJ o (lnb) + B a Yo(Xn b) = 0 (18) 

Combining Eqs. (17) and (18), a relation is shown to exist between the 
constants A n and Bn: 

A n Yo'(k n a ) 

B--~ : jo,(k ca) (19) 

Al so ,  an equa t ion  which  d e f i n e s  the e i g e n v a l u e s  is  ob ta ined ,  

Jo ' (kna)  Yo(ln b) - JoOtn b) Yo'(Xn a) = 0 (20) 

C o n s i d e r i n g  Eq.  (19), it wil l  be no t ed  that  A n and B n can  be e x p r e s s e d  
in t e r m s  of a c o m m o n  c o n s t a n t ,  Kn, by l e t t i ng  

An = Kn V~ a) I.. (21) 

B n = Kn Jo'(kna ) ] 
Hence the solution for the temperature function may be expressed as 

follows 

T(r ,  t) = E e'Xn kt K n w n ( r  ) + fc( r )  (22) 
0 

whe re  

W n (r)  = J o ' ( k n a ) Y o ( k n r )  - Jo(kn  r)  y o ' ( k a a )  {23) 

The in i t i a l  cond i t i on  m u s t  be e m p l o y e d  in d e t e r m i n i n g  the c o n s t a n t s  K n. 
F o r  t = 0, Eq.  (22) r e d u c e s  to 

K W a ( r )  = �89 G r-] l n 2 r -  l n 2 b +  2 ( l n a ) l n b l  (24) 
0 n c k . u j  

Orthogonal properties of the function Wn(r) over the interval [a, b] permit 
e v a l u a t i o n  of the c o n s t a n t s  K n. It can  be shown [4] that  

b 

~ r  Wn(r ) Wm(r  ) d r  = HaSnm 
a 

5 nm I = 1 for n = m 

= 0 for n ~ m 

The orthogonality constant, Hn, is found as 
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= - -  2 

Hn 2X~ g; / Xn ~ Wn2(a (251 
r=b 

By m u l t i p l y i n g  both s i d e s  of Eq. (24) by rWn( r )  and i n t e g r a t i n g  f r o m  a 
to b, we have  

b 

K n H n  = 1 Gc f r  Wn(r  ) E l n 2 r -  ln2b  + 2 ( l n a ) l n b ~  dr  

a 

Hence ,  u s i n g  Eq.  (23), the c o n s t a n t s  K n m a y  be found f r o m  the r e l a t i o n  
b 

ff 
in2b + 2(ina)ln dr (26) 

~. 

3. Resu l t s  

Some numerical results have been obtained, using the above solution and 
moist soil condition for the medium between the. cylinders. Figure 1 shows 
the temperature rise at the inner cylinder surface as a function of time 

for various ratios -b and for a = 5 cm. The time required for the inner a 
electrode to reach 63% of final temperature rise (apparent time constant) 

is shown in Figure 2, with a =5 i0 and 20 cm. and --b as independent J J a 

variable. 

~ 
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I 00  . . . .  

6OO 

24 

40-  a =Sere. 

so- ,?o 200 soo 4?0 500 
2s 
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' ~ ~  b* ~40cm. 

Fig. 1 Temperature rise of inner cylinder electrode 

It will be noted that the initial rate of temperature rise at the electrode 
is relatively high. The rate then drops to a low value which tends to 
remain almost unchanged for a considerable time. Very similar features 
have been observed experimentally with buried cylindrical electrodes [5]. 

An important question now arises: How can the results for the concentric 
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Fig. 2 Time required for inner cylinder electrode to reach 63% of final temperature rise 

cylinder arrangement be used to predict thermal performance of a single- 
cylinder electrode ? 

.&s the ratio b increases without limit, the resultant electrical resistance a 

of the electrode arrangement also increases without limit. 
In practice, we will have a cylindrical electrode of finite length and its 
resistance is finite for that reason. If the actual length of the straight 
single hemi-cylinder electrode is Z,, the radius is a, and ~ is much greater 
than a, one can show[ 6] that the electrical resistance becomes 

0E 
Rhc z -- in- S2/unit length a (27) 

The corresponding expression for the infinitely long concentric hemicylinder 
arrangement is 

PE 
i n  b ~ / u n i t  l e n g t h  ( 2 8 )  R h c c  - ff a 

Thus, if end effects were excluded the two arrangements would have 
the same electrical resistance by choosing the outer cylinder radius 

3 
b = ~L. Closer examination indicates that the two arrangements exhibit 

very similar electric and thermal field characteristics near the (common) 
inner electrode under the conditions assumed. Hence it is suggested that 
for the purpose of studying the near field and transient temperature changes 
of a long single cylinder, (length "~) one can use the concentric cylinder 



Transient thermal behaviour of ground electrodes 379 

3 
m o d e l  s t u d i e d  a b o v e  w i t h  b = ~-7~. 

A s  an  e x a m p l e ,  c o n s i d e r  a s i n g l e  h o r i z o n t a l  c y l i n d e r  of  r a d i u s  a = . 05 m .  
a n d  l e n g t h  Z = 4 . 1  m .  It  w i l l  h a v e  a r e s i s t a n c e - t o - g r o u n d  e q u a l  t h a t  of  a 
s p h e r e  o f  r a d i u s  . 5 m .  In a c c o r d a n c e  w i t h  the  a p p r o a c h  s u g g e s t e s  a b o v e ,  

the  c o r r e s p o n d i n g  c o n c e n t r i c  c y l i n d e r  m o d e l  h a s  a r a t i o  b = 61.  F i g u r e  2 
a 

s h o w s  t h a t  i t  w i l l  t a k e  a b o u t  17 d a y s  f o r  the  c y l i n d e r  to r e a c h  63% o f  f i n a l  
t e m p e r a t u r e  r i s e .  T h e  c o r r e s p o n d i n g  t i m e  f o r  the  s p h e r e  of  the  s a m e  
r e s i s t a n c e - t o - g r o u n d  w a s  38 d a y s  [ 1 ] .  

It  i s  o f  i n t e r e s t  a l s o  to c o m p a r e  t h e s e  r e s u l t s  w i t h  t he  s o - c a l l e d  S h o r t -  
t e r m  T i m e  C o n s t a n t ,  ~ i ,  f o r  the  e l e c t r o d e  s y s t e m s  c o n s i d e r e d .  
~'i i s  d e f i n e d  a s  the  r a t i o  b e t w e e n  f i n a l  t e m p e r a t u r e  r i s e  and  i n i t i a l  r a t e  
of  r i s e ,  t h a t  i s  

A T N a  X 
q -  _- 
i lim aT/ 

t-~0 ~-T 
r=a 

i a2 ~-~ for sphere 

a2 b) 2 for ~--~ ( l n  c y l .  

(29)  

For the cylinder arrangement in the above example, ~'i = 0.51 days, 
while the electrically equivalent spherical electrode has a Short-term Time 
Constant of 3.05 days. 

The analysis indicates quite clearly that the cylinder arrangement will 
heat up much faster than the spherical arrangement with identical electrical 
resistance-to-ground. In both cases, however, the results must be judged 
against the assumptions made at the outset. For instance, neglecting the 
heat loss to the atmosphere, and reduction in electrical resistivity of the 
soil as temperature increases, will cause some reduction in the maximum 
temperature reached by the electrode. 
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